3.565 \(\int \frac{\sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=237 \[ \frac{2 \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right ),\frac{a+b}{a-b}\right )}{b d \sqrt{a+b}}+\frac{2 a \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt{a+b \sec (c+d x)}}+\frac{2 a \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{b^2 d \sqrt{a+b}} \]

[Out]

(2*a*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c
+ d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*Sqrt[a + b]*d) + (2*Cot[c + d*x]*EllipticF[Arc
Sin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1
+ Sec[c + d*x]))/(a - b))])/(b*Sqrt[a + b]*d) + (2*a*Tan[c + d*x])/((a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.292973, antiderivative size = 237, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {3836, 4005, 3832, 4004} \[ \frac{2 a \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt{a+b \sec (c+d x)}}+\frac{2 a \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{b^2 d \sqrt{a+b}}+\frac{2 \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{b d \sqrt{a+b}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(2*a*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c
+ d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*Sqrt[a + b]*d) + (2*Cot[c + d*x]*EllipticF[Arc
Sin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1
+ Sec[c + d*x]))/(a - b))])/(b*Sqrt[a + b]*d) + (2*a*Tan[c + d*x])/((a^2 - b^2)*d*Sqrt[a + b*Sec[c + d*x]])

Rule 3836

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(a*Cot[e + f*x]*(
a + b*Csc[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] - Dist[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a +
 b*Csc[e + f*x])^(m + 1)*(b*(m + 1) - a*(m + 2)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b
^2, 0] && LtQ[m, -1]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[(Csc[e + f*x]*(1 +
 Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps

\begin{align*} \int \frac{\sec ^2(c+d x)}{(a+b \sec (c+d x))^{3/2}} \, dx &=\frac{2 a \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt{a+b \sec (c+d x)}}+\frac{2 \int \frac{\sec (c+d x) \left (-\frac{b}{2}-\frac{1}{2} a \sec (c+d x)\right )}{\sqrt{a+b \sec (c+d x)}} \, dx}{a^2-b^2}\\ &=\frac{2 a \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt{a+b \sec (c+d x)}}+\frac{\int \frac{\sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx}{a+b}-\frac{a \int \frac{\sec (c+d x) (1+\sec (c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx}{a^2-b^2}\\ &=\frac{2 a \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{b^2 \sqrt{a+b} d}+\frac{2 \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{b \sqrt{a+b} d}+\frac{2 a \tan (c+d x)}{\left (a^2-b^2\right ) d \sqrt{a+b \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 8.55713, size = 249, normalized size = 1.05 \[ \frac{\sec \left (\frac{1}{2} (c+d x)\right ) \sec (c+d x) \left (-4 b (a+b) \cos ^3\left (\frac{1}{2} (c+d x)\right ) \sqrt{\frac{1}{\sec (c+d x)+1}} \sqrt{\frac{a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} \text{EllipticF}\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right ),\frac{a-b}{a+b}\right )+a (a-b) \left (\sin \left (\frac{1}{2} (c+d x)\right )-\sin \left (\frac{3}{2} (c+d x)\right )\right )+4 a (a+b) \cos ^3\left (\frac{1}{2} (c+d x)\right ) \sqrt{\frac{1}{\sec (c+d x)+1}} \sqrt{\frac{a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} E\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{a-b}{a+b}\right )\right )}{b d \left (a^2-b^2\right ) \sqrt{a+b \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2/(a + b*Sec[c + d*x])^(3/2),x]

[Out]

(Sec[(c + d*x)/2]*Sec[c + d*x]*(4*a*(a + b)*Cos[(c + d*x)/2]^3*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c +
 d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)]*Sqrt[(1 + Sec[c + d*x])^(-1)] - 4*b*(a + b)*Cos[
(c + d*x)/2]^3*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a
- b)/(a + b)]*Sqrt[(1 + Sec[c + d*x])^(-1)] + a*(a - b)*(Sin[(c + d*x)/2] - Sin[(3*(c + d*x))/2])))/(b*(a^2 -
b^2)*d*Sqrt[a + b*Sec[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.272, size = 837, normalized size = 3.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a+b*sec(d*x+c))^(3/2),x)

[Out]

1/d/b/(a+b)/(a-b)*4^(1/2)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1
/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*
x+c)*a*b+cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Elliptic
F((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^2-cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*
(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(
d*x+c)*a^2-cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*Ellipt
icE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a*b*sin(d*x+c
)+b^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*EllipticF((
-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))-(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(co
s(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)-(cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a
+b))^(1/2))*a*b*sin(d*x+c)+cos(d*x+c)^2*a^2-cos(d*x+c)^2*a*b-cos(d*x+c)*a^2+cos(d*x+c)*a*b)/(b+a*cos(d*x+c))/s
in(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^2/(b*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{2}}{b^{2} \sec \left (d x + c\right )^{2} + 2 \, a b \sec \left (d x + c\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^2/(b^2*sec(d*x + c)^2 + 2*a*b*sec(d*x + c) + a^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{2}{\left (c + d x \right )}}{\left (a + b \sec{\left (c + d x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a+b*sec(d*x+c))**(3/2),x)

[Out]

Integral(sec(c + d*x)**2/(a + b*sec(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{2}}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^2/(b*sec(d*x + c) + a)^(3/2), x)